ENTHALPIES OF SOLUTION OF RbCl IN WATER AT 298.15 K AND LOW MOLALITIES

ANNA SANAHUJA * and JUAN L. GÓMEZ-ESTÉVEZ

Departament de Fisica Fonamental, Facultat de Física, Universitat de Barcelona, Diagonal-647, *0802%Barcelona (Spain)*

(Received 18 April 1989)

ABSTRACT

The enthalpies of solution of RbCl in water have been measured at 298.15 K in the molality range $0.003-0.095$ mol kg⁻¹. The molality range was extended to lower concentrations with respect to previous works in the literature to obtain a better extrapolation to infinite dilution. After treating all the data, a new value for the enthalpy of solution at infinite dilution, $\Delta_{sol} H_m^{\infty}$ has been obtained.

INTRODUCTION

There have been a great number of experimental determinations of the enthalpies of solution of RbCl in water at 298.15 K [1-5]. However, no systematic analysis of the entire data set exists to date in order to obtain an accurate value for $\Delta_{sol}H_{\rm m}^{\infty}$, the enthalpy of solution at infinite dilution. The data obtained by different authors show a wide scattering and the number of experimental points is in general rather low, i.e. 3 or fewer [2,3]. The standard reference, ref. 1, gives a $\Delta_{sol}H_{\rm m}^{\infty}$ value of 4130 \pm 75 cal mol⁻¹ ** at 298.15 K. To obtain this value, Parker employed the data available at that time [1,4], which consisted of six references giving $\Delta_{sol}H_{\rm m}^{\infty}$ values ranging from 4000 to 4151 cal mol⁻¹ and, with one exception, at temperature different from 298.15 K. The extrapolation was accomplished using interpolated L_{ϕ} data for RbCl which increased the uncertainties in the finally proposed $\Delta_{sol} H_{\rm m}^{\infty}$ value even more. By using more recent data for $\Delta_{sol} H_{\rm m}$ [2-9] and L_{∞}^{∞} [10], it is possible to obtain a value for $\Delta_{sol}H_{\rm m}^{\infty}$ which is more reliable at 298.15 K. The resulting value is significantly lower than Parker's estimate [4]. Results obtained more recently [3,5] confirm this trend.

^{*} Author to whom correspondence should be addressed.

^{* * 1} **cal =** 4.184 J throughout this paper.

There is another problem associated with the determination of $\Delta_{sol} H_{\rm m}^{\infty}$. All the experimental measurements quoted above [2-7,9] are restricted to the molality range $0.028-0.14$ mol kg⁻¹. For a better extrapolation to zero molality, it would be interesting to extend the determinations of $\Delta_{sol}H_m$ at lower concentrations. These measurements should confirm the lowering of $\Delta_{sol}H_{\rm m}^{\infty}$ obtained by using the more recent $\Delta_{sol}H_{\rm m}$ data [5].

This work presents measurements for the enthalpy of solution of RbCl in water at 298.15 K. The molality range covered was from 0.003 to 0.095 mol kg^{-1} . We have extended the range to lower molalities for a more reliable extrapolation to infinite dilution. Using our data together with the data reported in the literature, a new value for $\Delta_{sol} H_m^{\infty}$ has been obtained by means of two different methods of extrapolation.

EXPERIMENTAL

The enthalpy of solution was measured with a Tian-Calvet-type calorimeter described in detail in previous works [11,12]. For each measurement the temperature was determined within ± 0.02 K, an electrical calibration was carried out before and after each solution process and the initial mechanical effect was corrected as explained earlier. The calorimetric resolution is 0.02 J and the reproducibility of the measurements is about 1%.

The water used was doubly distilled and the solid sample was Merck Suprapur. It was heated for 5 h in a furnace at 774 ± 5 K. The molalities are better than 0.01% and the solute weighings are accurate to 0.003%.

RESULTS

The results obtained for the enthalpies of solution of RbCl in water at 298.15 K are shown in Table 1. The molar mass of RbCl used was 120.9208 g mol⁻¹. In Table 1, m_s is the solute mass, m is the molality and T is the temperature for each solution. $\Delta_{sol}H_m(T)$ is the molar enthalpy of solution at *T* and $\Delta_{sol}H_m(298.15 \text{ K})$ is the molar enthalpy adjusted to 298.15 K. ϵ is the experimental error. The adjustments were found as follows

$$
\Delta_{sol} H_{m}(298.15 \text{ K}) = \Delta_{sol} H_{m}(T) + C_{p,m}(298.15 \text{ K} - T) \tag{1}
$$

where $C_{p,m} = C_{\phi,m} - C_{p,m}$. $C_{\phi,m}$ is the apparent molar heat capacity of the dissolved salt at the given molality and $C_{\rho,m}^*$ is the molar capacity of the salt before solution. Literature values [13,14] of $C_{\rho,m}^{\pi}$ and $C_{\phi,m}$ were employed. The error due to condensation of solvent is given approximately by

$$
\delta_{sol}H_{\rm m} = -(2xp^{\star}v_{\rm m}^g/R T)\Delta_1^g H_{\rm m}^{\star}
$$
 (2)

where x denotes the mole fraction of the solute after dissolution, p^* the

Solute mass ms	Molality <i>m</i>	\pmb{T}	$\Delta_{sol}H_{m}(T)$	$\Delta_{sol}H_m$	Errors
(g)	$(mod \, kg^{-1})$	(K)	$\text{(cal mol}^{-1})$	(298.15 K $\text{(cal mol}^{-1})$	€ $\text{(cal mol}^{-1})$
0.03544	0.00986	297.95	4014	4005	38
0.07050	0.01944	298.01	4042	4036	21
0.10128	0.02804	298.33	4039	4047	14
0.11969	0.03323	298.59	4079	4098	8
0.15149	0.04177	298.01	4060	4054	1
0.17063	0.04723	298.59	4056	4075	11
0.19865	0.05480	297.95	4117	4108	3
0.20715	0.05760	298.27	4068	4073	27
0.23100	0.06395	298.33	4038	4046	10
0.25667	0.07104	298.91	4058	4091	18
0.31375	0.08712	298.53	4076	4092	8
0.34119	0.09470	298.56	4022	4039	12

TABLE 1 The enthalpies of solution of RbCl in water at 298.15 K

vapour pressure of the pure solvent and $\Delta_1^g H_m^{\star}$ the molar enthalpy of evaporation of the pure solvent. The correction for the solvent condensation effect was negligible in all cases.

DISCUSSION

For treatment of the experimental $\Delta_{sol}H_m$ values, several methods are available [15]. Basically, two alternatives can be used. In the first possibility, the enthalpy of solution at infinite dilution $\Delta_{sol}H_{\rm m}^{\infty}$ is obtained as the mean of the extrapolated values with the help of the relative apparent molar enthalpy L_{ϕ} (m). The uncertainty is the standard deviation of the mean. The second method consists of fitting the experimental data by means of an analytical equation in m . In this paper the following expression was used

$$
\Delta_{sol}H_m = \Delta_{sol}H_m^{\infty} + A_H m^{1/2} + Bm
$$
\n(3)

where A_{H} is the Debye-Hückel limiting slope [16] and $\Delta_{sol}H_{m}^{\infty}$ and *B* are the adjustable parameters. The uncertainty in the estimation of these adjustable parameters was calculated in the normal manner [17].

The experimental data presented in Table 1 were analysed by using the two methods explained above. The values found for $\Delta_{sol} H_m^{\infty}$ were 3986 ± 2 and 4001 ± 25 cal mol⁻¹ respectively. They are lower than the recent values obtained by Johnson and Gayer [4], 4064 ± 6 , and by Weintraub et al [5], 4034 ± 11 cal mol⁻¹. These discrepancies can be explained if the different range of molality covered by the experiments is taken into account. For

Fig. 1. Plot of the integral enthalpies of solution $\Delta_{sol}H_m$ vs. molality. Experimental values from ref. 5 (\bullet) and the present work (\square). —— Fit of the experimental data using eqn. (3).

example, in reference 5 the molality range covered was $0.05-0.12$ mol kg⁻¹ whereas in our case the minimum molality was 0.003 mol kg^{-1} . If the first four measurements quoted in Table 1 are omitted in a second fit of the data, our experimental molality range matches well with that of Weintraub et al. The values of $\Delta_{sol}H_m^{\infty}$ obtained in this case were 4039 \pm 3 and 4011 \pm 24 cal mol^{-1} respectively. The agreement is now satisfactory, clearly showing the influence of the minimum molality attainable on the experimental determination of $\Delta_{sol}H_m$. A comparison with the Merck Suprapur data points obtained by Weintraub et al. [5] in the common molality range, see Fig. 1, shows good agreement within experimental uncertainties. For this reason, a reliable $\Delta_{sol}H_{\rm m}^{\infty}$ value for RbCl in water at 298.15 K could be obtained by fitting our $\Delta_{sol}H_m$ data combined with those of Weintraub et al. [5] by means of eqn. (3). The value obtained for $\Delta_{sol}H_{\rm m}^{\infty}$ is 3984 \pm 2 cal mol⁻¹. This value agrees well ($\leq 0.7\%$) with that obtained as a mean after extrapolation to infinite dilution using L_{ϕ} data [10]. As a final test for our proposed value for $\Delta_{sol}H_{\rm m}^{\infty}$, the entire data set of experimental $\Delta_{sol}H_{\rm m}$ values available [l-4,6-9] was analysed using the two methods explained above. The agreement was better than 0.8%.

REFERENCES

- V.B. Parker, Thermal Properties of Aqueous Uni-univalent Electrolytes, National Bureau of Standards, Washington, DC, 1965.
- D. Smith-Magovan and R.N. Goldberg, A Bibliography of Sources of Experimental Data Leading to Thermal Properties of Binary Aqueous Electrolyte Solutions, NBS Spec. Publ. 537, National Bureau of Standards, Washington, D.C., 1979.
- R.L. Montgomery, R.A. Melangh, C.C. Lan, G.H. Meier, R.T. Grow and F.D. Rossini, J. Chem. Eng. Data, 23 (1978) 245.
- 4 G.K. Johnson and K.H. Gayer, J. Chem. Thermodyn., 11 (1979) 41.
- 5 R. Weintraub, A. Apelblat and A. Tamir, J. Chem. Thermodyn., 14 (1982) 887.
- 6 A.F. Borob'ev, N.A. Ibragin and S.M. Skuratov, Russ. J. Inorg. Chem., 11 (1966) 13.
- 7 R.I. Sergeeva, S.I. Drakin and MKh. Karapet'yants, Russ. J. Phys. Chem., 44 (1970) 1483.
- 8 A. Dadgar and M.R.. Taherian, J. Chem. Thermodyn., 9 (1977) 711.
- 9 V.K. Abrosimov, A.V. Ionov and G.A. Krestov, Radiokhimiya, 19 (1977) 862.
- 10 J.L. Fortier, P.A. Leduc and J.E. Desnoyers, J. Solution Chem., 3 (1974) 323.
- 11 A. Sanahuja and E. Cesari, J. Chem. Thermodyn., 16 (1984) 1195.
- 12 A. Sanahuja and J.L. Gómez-Estévez, J. Chem. Thermodyn., 19 (1987) 243.
- 13 Landolt-Börnstein, Kalorische Zustangrössen, Springer Verlag, West Berlin, 1961, II Band, 4 teil, p. 504.
- 14 J.E. Desnoyers, C. de Visser, G. Perron and P. Picker, J. Solution Chem., 5 (1976) 605.
- 15 A. Sanahuja and J.L. Gomez-Estevez, Thermochim. Acta, 94 (1985) 223.
- 16 E.C.W. Clarke and D.N. Glew, J. Chem. Sot., Faraday Trans. 1, 76 (1980) 1911.
- 17 P.R. Bevington, Data Reduction and Error Analysis for the Physical Sciencies, McGraw-Hill, New York, 1969.